Getting Started with methyldeconv
Welcome to methyldeconv! This vignette will help you get up and running with cell-type deconvolution for DNA methylation data using the package’s unified interface and included methods.
Installation
You can install methyldeconv from GitHub using the pak package manager:
# install the `pak` package manager
install.packages("pak")
pak::pkg_install("omnideconv/methyldeconv")
Example Usage
methyldeconv can be applied directly to a methylSet from the minfi package, or you can apply each method separately on a beta matrix with Illumina CpG IDs.
Below, we demonstrate how to use the EpiDISH method with example data from minfi:
library(methyldeconv)
library(minfi)
library(minfiData)
# use example data from Minfi
methyl_set <- minfiData::MsetEx
ratio_set <- minfi::ratioConvert(methyl_set)
beta_matrix <- minfi::getBeta(ratio_set)
# run EpiDISH for deconvolution of example data
result <- methyldeconv::deconvolute(methyl_set = methyl_set, method = 'epidish')
Viewing the Results
The result of the deconvolution is a table with the estimated cell-type fractions for each sample. You can view it directly as a nicely formatted table:
B | CD4T | CD8T | Eosino | Mono | Neutro | NK | |
---|---|---|---|---|---|---|---|
5723646052_R02C02 | 0.1868416 | 0.1993816 | 0 | 0.1853980 | 0.3058855 | 0 | 0.1224934 |
5723646052_R04C01 | 0.1841371 | 0.1411284 | 0 | 0.2169230 | 0.3220845 | 0 | 0.1357269 |
5723646052_R05C02 | 0.0000000 | 0.2990338 | 0 | 0.1252629 | 0.3593454 | 0 | 0.2163580 |
5723646053_R04C02 | 0.0610074 | 0.1500589 | 0 | 0.2699428 | 0.4363476 | 0 | 0.0826434 |
5723646053_R05C02 | 0.1221793 | 0.1659357 | 0 | 0.2266461 | 0.3354384 | 0 | 0.1498004 |
5723646053_R06C02 | 0.0000000 | 0.1364639 | 0 | 0.2388252 | 0.4611588 | 0 | 0.1635522 |
For more details, see the package documentation and other vignettes!