R/custom_deconvolution_methods.R
deconvolute_consensus_tme_custom.Rd
Deconvolute using ConsesnusTME and a custom signature matrix
deconvolute_consensus_tme_custom(
gene_expression_matrix,
signature_genes,
stat_method = "ssgsea"
)
a m x n matrix with m genes and n samples. Data should be TPM normalized and log10 scaled.
a list with each element containing genes to represent a cell type. The cell types should be the names of each element of the list.
Choose statistical framework to generate the entichment scores.
Default: 'ssgsea'. Available methods: 'ssgsea', 'gsva', 'plage', 'zscore', 'singScore'.
These mirror the parameter options of GSVA::gsva()
with the exception of singScore
which leverages singscore::multiScore()
ConsensusTME uses tumor-specific consensus built gene signatures. In this case only the user-provided signature will be used