Skip to contents

we recommend to only merge simulations from the same dataset object, otherwise the count matrices might not correspond on the gene level

Usage

merge_simulations(simulation_list)

Arguments

simulation_list

a list of simulations

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

Examples

counts <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))

colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))

annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)

dataset <- SimBu::dataset(
  annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
  name = "test_dataset"
)
#> Filtering genes...
#> Created dataset.

s1 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
#> Finished simulation.

s2 <- SimBu::simulate_bulk(dataset,
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
#> Finished simulation.

s <- SimBu::merge_simulations(list(s1, s2))